Package 'nhs.predict'

Title: Breast Cancer Survival and Therapy Benefits
Description: Calculate Overall Survival or Recurrence-Free Survival for breast cancer patients, using 'NHS Predict'. The time interval for the estimation can be set up to 15 years, with default at 10. Incremental therapy benefits are estimated for hormone therapy, chemotherapy, trastuzumab, and bisphosphonates. An additional function, suited for SCAN audits, features a more user-friendly version of the code, with fewer inputs, but necessitates the correct standardised inputs. This work is not affiliated with the development of 'NHS Predict' and its underlying statistical model. Details on 'NHS Predict' can be found at: <doi:10.1186/bcr2464>. The web version of 'NHS Predict': <https://breast.predict.nhs.uk/>. A small dataset of 50 fictional patient observations is provided for the purpose of running examples with the main two functions, and an additional dataset is provided for running example with the dedicated SCAN function.
Authors: Giovanni Tramonti
Maintainer: Giovanni Tramonti <[email protected]>
License: GPL-2
Version: 1.4.0
Built: 2024-11-22 05:21:52 UTC
Source: https://github.com/cran/nhs.predict

Help Index


Example patient data

Description

Example of a brief list of breast cancer patient records with the necessary variables to calculate Predict v2.1 scores.

Usage

data(example_data)

Format

A dataframe with 50 patient observations and 13 variables.


os.predict

Description

Calculates 'NHS Predict' v2.1 Overall survival and therapy benefits

Usage

os.predict(
  data,
  year = 10,
  age.start,
  screen,
  size,
  grade,
  nodes,
  er,
  her2,
  ki67,
  generation,
  horm,
  traz,
  bis
)

Arguments

data

A dataframe containing patient data with the necessary variables.

year

Numeric, Specify the year since surgery for which the predictions are calculated, ranges between 1 and 15. Default at 10.

age.start

Numeric, Age at diagnosis of the patient. Range between 25 and 85.

screen

Numeric, Clinically detected = 0, Screen detected = 1, Unknown = 2.

size

Numeric, Tumor size in millimeters.

grade

Numeric, Tumor grade. Values: 1,2,3. Missing=9.

nodes

Numeric, Number of positive nodes.

er

Numeric, ER status, ER+ = 1, ER- = 0.

her2

Numeric, HER2 status, HER2+ = 1, HER2- = 0. Unknown = 9.

ki67

Numeric, ki67 status, KI67+ = 1, KI67- = 0, Unknown = 9.

generation

Numeric, Chemotherapy generation. Values: 0,2,3..

horm

Numeric, Hormone therapy, Yes = 1, No = 0.

traz

Numeric, Trastuzumab therapy, Yes = 1, No = 0.

bis

Numeric, Bisphosphonate therapy, Yes = 1, No = 0..

Value

The function attaches additional columns to the dataframe, matched for patient observation, containing Overall survival at the specified year, plus the additional benefit for each type of therapy.

Examples

data(example_data)

example_data <- os.predict(example_data,age.start = age,screen = detection,size = t.size,
                     grade = t.grade, nodes = nodes, er = er.status, her2 = her2.status,
                     ki67 = ki67.status, generation = chemo.gen, horm = horm.t,
                     traz = trastuzumab, bis = bis.t)

data(example_data)

example_data <- os.predict(example_data,year = 15, age,detection,t.size,t.grade,
                           nodes,er.status,her2.status,ki67.status,chemo.gen,horm.t,
                           trastuzumab,bis.t)

rfs.predict

Description

Calculates 'NHS Predict' v2.1 Recurrence-free survival and therapy benefits

Usage

rfs.predict(
  data,
  year = 10,
  age.start,
  screen,
  size,
  grade,
  nodes,
  er,
  her2,
  ki67,
  generation,
  horm,
  traz,
  bis
)

Arguments

data

A dataframe containing patient data with the necessary variables.

year

Numeric, Specify the year since surgery for which the predictions are calculated, ranges between 1 and 15. Default at 10.

age.start

Numeric, Age at diagnosis of the patient. Range between 25 and 85.

screen

Numeric, Clinically detected = 0, Screen detected = 1, Unknown = 2.

size

Numeric, Tumor size in millimeters.

grade

Numeric, Tumor grade. Values: 1,2,3. Missing=9.

nodes

Numeric, Number of positive nodes.

er

Numeric, ER status, ER+ = 1, ER- = 0.

her2

Numeric, HER2 status, HER2+ = 1, HER2- = 0. Unknown = 9.

ki67

Numeric, ki67 status, KI67+ = 1, KI67- = 0, Unknown = 9.

generation

Numeric, Chemotherapy generation. Values: 0,2,3. If value is missing, default=3.

horm

Numeric, Hormone therapy, Yes = 1, No = 0. If value is missing, default= er status.

traz

Numeric, Trastuzumab therapy, Yes = 1, No = 0. If value is missing, default= her2 status.

bis

Numeric, Bisphosphonate therapy, Yes = 1, No = 0. if value is missing, default=1.

Value

The function attaches additional columns to the dataframe, matched for patient observation, containing recurrence-free survival at the specified year, plus the additional benefit for each type of therapy.

Examples

data(example_data)

example_data <- rfs.predict(example_data,age.start = age,screen = detection,size = t.size,
                     grade = t.grade, nodes = nodes, er = er.status, her2 = her2.status,
                     ki67 = ki67.status, generation = chemo.gen, horm = horm.t,
                     traz = trastuzumab, bis = bis.t)

data(example_data)

example_data <- rfs.predict(example_data,year = 15, age,detection,t.size,t.grade,
                           nodes,er.status,her2.status,ki67.status,chemo.gen,horm.t,
                           trastuzumab,bis.t)

Example SCAN patient data

Description

Example of a brief list of breast cancer patient records with the necessary variables to calculate Predict v2.1 scores, according to coding and naming conventions of SCAN.

Usage

data(scan_example_data)

Format

A dataframe with 20 patient observations and 8 variables.


scan.predict

Description

Calculates 'NHS Predict' v2.1 Overall survival and chemotherapy benefits in a simplified version with fewer inputs, suited for SCAN audit.

Usage

scan.predict(data, age.start)

Arguments

data

A dataframe containing patient data with the necessary variables.Except for age at diagnosis, the other variables must be named according to SCAN

age.start

Numeric, Age at diagnosis of the patient. Range between 25 and 85.

Value

The function attaches additional columns to the dataframe, matched for patient observation, containing Overall survival at the specified year, plus the additional benefit for chemotherapy at 5, 10, and 15 years interval. Observations containing missing values are moved to the bottom.

Examples

data(scan_example_data)

scan_example_data <- scan.predict(scan_example_data, age.start = diag_age)